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Abstract: We solve numerically the Schwinger-Dyson ghost equation in the Landau gauge

for a given, finite at k = 0 gluon propagator (i.e. the infrared exponent of its dressing

function, αgluon, is 1) and under the usual assumption of constancy of the ghost-gluon

vertex ; we show that there exist two possible types of ghost dressing function solutions,

as we have previously inferred from analytical considerations: one which is singular at zero

momentum (the infrared exponent of its dressing function, αghost,
† is < 0), satisfies the

familiar relation αgluon + 2αghost = 0 and has therefore αghost = −1/2, and another one

which is finite at the origin with αghost = 0 and violates the relation. It is most important

that the type of solution which is realized depends on the value of the coupling constant.

There are regular ones — αF = 0 — for any coupling below some value, while there is only

one singular solution — αF < 0 —, obtained for a single critical value of the coupling. For

all momenta k < 1.5 GeV where they can be trusted, our lattice data exclude neatly the

singular one, and agree very well with the regular solution we obtain at a coupling constant

compatible with the bare lattice value.
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1. Introduction

Since the first attempts, an impressive progress has been made in understanding the solu-

tions to the Schwinger-Dyson (SD herafter) equations for the QCD propagators and their

behaviour at small momenta. In particular, an important step has been accomplished by

putting forward the essential contribution of internal ghost loops in the gluon propagator

equation, previously neglected; it has been shown that it may completely change the pre-

viously expected behavior of the gluon propagator from much more singular than the free

one (diverging like 1/k4- as was believed for a long time), to being much less singular [1].1

All the following considerations are made assuming the choice of the Landau (i.e. Lorentz)

gauge.

The consensus before 2005. For some years, a consensus seemed to be obtained around

a statement of 1) an infrared fixed point of the gluon-ghost coupling and 2) a singular

ghost dressing function (see below for more explanation). This consensus was very strong

and unopposed, since several other approaches were apparently converging to the same

conclusions. Such authoritative people as S. Brodsky have also appealed to it to support

their considerations about AdS/CFT (see [2]2). Another part of the consensus, deduced

from a solution to coupled SD equations, was the statement that αG > 1, i.e. the gluon

propagator should necessarily vanish; yet this was contested by a thorough calculation of

Bloch [3].

1For this particular case, see especially the section 3 of the quoted paper.
2See especially section 3 of the paper by Brodsky giving references to certain lattice data and to non

perturbative statements like solutions of SD equations.
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To be more specific about this consensus, a usual assumption for the infrared behaviour

of gluon and ghost dressing functions is that they should be power behaved, i.e. for the

gluon G(k) and the ghost F (k) dressing functions respectively:

G(k) ∼ (k2)αG , (1.1)

F (k) ∼ (k2)αF . (1.2)

In a number of studies [1, 4], it has been stated that for a suitably simple assumption

concerning the ghost-gluon and gluon vertices, the SD coupled equations for G(p) and

F (p) imply

αG + 2αF = 0. (1.3)

This statement is the starting point for the popular claim of an infrared fixed point for the

QCD renormalised coupling constant. In fact, admitting the validity of eq. (1.3), the IR

fixed point would be present in the coupling constant defined by the ghost-gluon 3 points

Green function in a MOM scheme. Let us recall the renormalisation conventions, with bare

quantities denoted by a “B” subindex. In general:

GB(k2) = Z3 GR(k2), FB(k2) = Z̃3 FR(k2), gB = Zg gR,

ΓR = z̃1 ΓB , Zg = z̃1 (Z
1/2
3 Z̃3)

−1. (1.4)

In the MOM schemes:

Z3 = GB(µ2), (1.5)

Z̃3 = FB(µ2), (1.6)

GR(k2, µ) = GB(k2)/GB(µ2), (1.7)

FR(k2, µ) = FB(k2)/FB(µ2), (1.8)

while many possibilities are open for the renormalisation condition of the vertex. We need

not specify it for reasons explained hereafter below eq. (2.1). Then:

gR(µ) = gBGB(µ2)1/2FB(µ2)/z̃1(µ). (1.9)

This implies that the product gR(µ)z̃1(µ)(GR(k2, µ))1/2FR(k2, µ) is independent of µ.

Now, gR(µ) would tend to a finite limit for small µ if eq. (1.3) would hold, under the

additional assumption that z̃1(µ) is finite for µ → 0.3

The input of lattice data. Recently, lattice data have also entered the game and have

contributed much to the discussion, by showing features quite contrary to this consensus.

Our motivation here is to try to clarify the situation within the SD approach by exhibiting

3Note that the UV finiteness of ez1(µ) does not imply that it is µ independent, even in perturbation;

see in particular, for the symmetric MOM scheme, eq. (13) in our ref. [5], extracted from the results of

Chetyrkin and Retey [6]; however, we can suppose that the non perturbative IR behavior is not too singular.
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new numerical solutions restoring the agreement between the lattice data, the numerical

study in the continuum and the analytical considerations.4

We can test relation (1.3) on the lattice by computing the quantity G(k)F (k)2 which,

according to it, would be expected to tend to a finite value at small k. In fact this is clearly

contradicted by the lattice data, as can be seen on figure 1 of our paper [5] and, in the

work of Sternbeck and collaborators, on figure 4 of [9] or figure 3 of [10], all of which show

that the product decreases rapidly at small k, possibly to zero. In addition, as we will

see in sections 2 and 3, for solutions satisfying the relation (1.3) the value to which the

product NcgR
2(µ)z̃1(µ)GR(k2, µ)FR

2(k2, µ) must tend when k → 0 is much larger than the

value observed at the smallest accessible momenta (it should be 10 π2 in the case αG = 1,

assuming the renormalized ghost-gluon vertex function H1R(q, k, µ) to be equal to 1).

In the above studies, which try to solve the coupled SD equations, the gluon propa-

gator is also predicted, and it is found that αG is positive, which is anyway also suggested

by lattice QCD. If so, and if the relation (1.3) would hold, then it would imply finally that

αF < 0, i.e.that the ghost dressing function should be singular. This statement would be

in agreement with the Kugo-Ojima criterion for confinement, a convergence which would

make the general picture obtained theoretically appealing.

However, from the admitted values of αG & 1, αF . −1/2, F (k2) should present a

power behavior close to 1/k, or even more singular. This stronger result is excluded by

the lattice data, which allow at most a very weak singularity ; indeed according to our

first analysis [5] and to the study of Sternbeck et al. [11] (see also their recent large volume

study [12]), the power seems to be at most αF = −0.2 down to momenta around 0.3 GeV;5

in fact, we have obtained better fits of our own SU(2) and SU(3) data with logs rather

than with powers [13]; finally, if we abandon any prejudice, it appears that it is compatible

with a finite value as well. Certainly, a value close to αF = −0.5 is not possible, unless

there is a sudden change of behavior very near k = 0. This conclusion is reinforced by the

recent results of Cucchieri and Mendes at very large volumes [14].

Analytical setting. In view of this situation, in our paper [5], we started a new dis-

cussion on the implications of the ghost SD equation for the IR behavior of the ghost

propagator.

We consider this equation in its subtracted, UV convergent form:

1

FB(k2)
−

1

FB(k′2)
= −Ncg

2
B

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)
× (1.10)

×

[
GB((q − k)2)H1B(q, k)

((q − k)2)2
−

GB((q − k′)2)H1B(q, k′)

((q − k′)2)2

]
FB(q2)

with k′ an arbitrary subtraction point, taken for simplicity parallel to k, k′ = k
√

k′2/k2.

4An attempt to describe the lattice data within SD coupled equations is made in [7]. For a recent attempt

to accommodate the lattice data (with a finite non zero ghost dressing function) within the Gribov-Zwanziger

approach see [8].
5Note that these authors plot q2 along the x axis in the figures.
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H1 is one of the invariants in the Lorentz decomposition of the ghost-gluon vertex:

Γ̃abc
Bµ(−q, k; q − k) = igBfabcqνΓ̃Bνµ(−q, k; q − k)

= igBfabc(qµH1B(q, k) + (q − k)µH2B(q, k)) (1.11)

where −q, k and q − k are respectively the entering momenta of the outgoing ghost, the

ingoing one and the gluon.

In all our present considerations this equation is considered with given gluon propagator

and vertex as ansätze, and the ghost dressing function appears then as the solution to the

equation. This is what we call the SD ghost equation. We do not try to solve any other

SD equation. The advantage of concentrating on this equation is that it is much simpler

than the gluon one or any other, to the point that analytical statements can be formulated

for the ghost for any given gluon propagator and vertex. On the other hand, various

assumptions on the IR behavior of the gluon propagator and the vertex may be used, in

particular those advocated in the above references. Both these inputs and the output ghost

solution can be tested by means of a comparison with the lattice data.

Using the definitions given in eq. (1) the renormalised form of this equation is obtained

as:

1

FR(k2)
−

1

FR(k′2)
= −Ncg

2
Rz̃1

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)
× (1.12)

×

[
GR((q − k)2)H1R(q, k)

((q − k)2)2
−

GR((q − k′)2)H1R(q, k′)

((q − k′)2)2

]
FR(q2).

We know that, in Landau gauge, H1B(q, 0) + H2B(q, 0) = 1 which implies that z̃1 is finite

for any momentum configuration.6 Let us remark that this implies that the subtracted SD

equation is convergent. Indeed, z̃1 and the l.h.s. of eq. (1.12) being finite the integral in

the r.h.s. must be convergent. This was not obvious in the bare version.

In the following, we set k′2 = µ2 to get the one variable renormalised integral equation.

One can wonder whether the solutions of this subtracted SD equation are also solutions

of the unsubtracted one:

1

FR(k2)
= Z̃3 − Ncg

2
Rz̃1

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)
×

×

[
GR((q − k)2)H1R(q, k)

((q − k)2)2

]
FR(q2). (1.13)

This is seen to hold simply by making:

Z̃3 =1 + Ncg
2
Rz̃1×

×

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)[
GR((q − k)2)

((q − k)2)2

]
H1R(q, k) FR(q2)


k2=µ2 . (1.14)

6Let us recall that what has been really demonstrated in the paper of Taylor [15] is the equation we

have just written, i.e. for a vertex with zero ingoing ghost momentum. Then ez1 = 1 for this particular

MOM renormalisation; in general it will remain finite but different from 1. The detailed explanations on

the Taylor paper are given in our article [5].
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Of course, one has now to regularise the integral in some way, and this introduces a finite

arbitrariness in Z̃3. The divergence of the integral in equation (1.14), which is responsible

for the divergence of Z̃3 itself, will be of course cancelled, upon insertion in eq. (1.13), by

the second integral, similarly to what occurred in the subtracted form (1.12).

Introducing the regular solutions for the ghost dressing function. We concluded

in ref. [5] that, in general, under the usual IR regularity assumption for the ghost-gluon

vertex, the SD ghost equation implies the relation (1.3) by itself, without recoursing to the

gluon equation. There were exceptions however (see below), but we first discarded them.

Therefore, since the relation is definitely seen to be violated on the lattice, while the SD

equation is automatically satisfied, we first suggested in the same paper, as a way out of

this puzzle, that the vertex invariant H1 could be IR singular instead of being constant.

Then, it soon appeared, in view of the lattice data, in particular thanks to Sternbeck

et al. [10] as well as to the previous work of Cucchieri et al. [16], that this possibility is very

unprobable: indeed they measure H1B(q, q) (gluon at zero momentum, and contraction

with qµ), and they find it roughly constant and close to 1. Therefore, our attention has

been drawn to the cases, predicted in our analytical discussion of the SD ghost equation [5],

where the relation 1.3 can be violated in spite of having a regular ghost-gluon vertex.

These are the cases where αG ≃ 1 and αF = 0, i.e. where the ghost dressing function

is regular7 at the origin. As we have said, we did not pay attention to them in the

beginning. But we have become aware that this possibility is attractive because:

1) on the lattice, αG seems to be not far from 1, cf. refs. [17, 18], i.e. the gluon propagator

is not far from being finite (see also the very recent very large volumes studies of

the above references [12, 14]). Thus it automatically leads to a rapidly decreasing

G(k2)F (k2)2, O(k2), behaviour when k approaches 0 in agreement with what is

observed.

2) last but not least, on the lattice, the effective αF is compatible with 0, as we have

seen above.

Therefore, the appealing possibility αF = 0 has been adopted in our subsequent pa-

per [13].

On the other hand, no statement can be deduced from these analytical considerations

concerning the ghost SD equation as to which solution for the ghost propagator should be

effectively preferred in real QCD. A complementary theoretical input comes from

the Slavnov-Taylor (ST) identity for the three-gluon vertex. From this identity,

we have demonstrated in [19] that the ghost dressing function should be IR finite.

The aim of the present paper is to reconsider this question by a numerical study of

the ghost SD equation with input from lattice data for the gluon propagator and the simple

and widely admitted constancy assumption for the vertex. The conclusion is striking: it is

found that the IR finite solutions violating the relation (1.3) indeed exist. Which type of

solution is realized, either singular or regular at k → 0, depends on the actual value of the

7For some qualification of the term “regular” used in the present context, see below after eq. (1.15).
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QCD coupling constant. One and only one singular solution is obtained, for only one

value of g2 which we call “critical”, and it can be completely exhibited; according to our

calculation, it cannot be the one of real QCD, because it disagrees grossly with

the lattice results over a large range of momenta. Therefore, in agreement with

our ST statement, the actual ghost dressing function must be regular, i.e. IR finite, and

indeed we find solutions regular at k → 0 describing very well the lattice ghost

data, with values of the coupling constant close to the one estimated from the actual bare

coupling constant of the lattice. In summary, the combination of the numerical resolution

and of the ghost lattice data or the ST theoretical input allows to discard the singular

solution.

Warnings. A caveat must be made now. To make the discussion simple and to keep it

close to the commonly accepted conceptual framework, we have adopted above the usual

assumption of a pure power IR behaviour for dressing functions. But this is by no means a

necessary assumption; especially for a massless theory, it would not be unexpected to have

a behavior with log factors accompanying integer powers of k2. For instance, according to

our Slavnov-Taylor discussion [5, 19, 20], the gluon propagator must be infinite at the origin

under some regularity assumption for the three-gluon vertex. Then a way to reconcile this

statement with the observation of an apparently IR finite propagator from the lattice is to

assume that this divergence is logarithmic, which would make it very difficult to detect on

the lattice.8 In this case,the behavior of G(k) would be G(k) ≃ k2(log(k2))ν (ν > 0). We

present the results disregarding the logs, although we have also checked in our numerical

calculation that including such a log in the gluon propagator does not change

appreciably the ghost propagator deduced from the SD equation.

In addition, in our analytical discussion [19], we have shown that if αG = 1 and αF = 0

one must have in the ghost dressing function logarithms of the type

F (k) = a + b k2 log(k2). (1.15)

The effect of such logarithms is very weak so that for the present purpose we qualify this

as “regular”, and anyway, it is IR finite. Nevertheless, it is possible to display the effect

of this logarithm in the numerical calculation.

As we have just said, we have checked that including a log in the gluon propagator

does not change appreciably the ghost propagator deduced from the SD equation. This is

in agreement with an analytical argument which shows that only the power of the log in

eq. (1.15) is changed.

Assumptions and inputs of the calculation. To summarise, our starting assumptions

for the numerical calculation below are the following:

1) we take the ghost gluon vertex invariant H1(k, q) implied in the SD ghost equation

(see below) as momentum independent. This is a rather usual assumption made in

8Of course, the gluon propagator is always finite at k = 0 in a finite volume. What we mean here is

that the gluon propagator at k = 0 seems to be relatively constant for increasing volume. But one cannot

exclude a very slow variation, such as expected from a logarithm.
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SD studies and, as we said above, it is in rough compatibility with present lattice

data. In fact, it would be sufficient to assume simply a regular vertex to get the same

qualitative conclusions, but for a numerical study we have to make a definite choice.

Let us emphasize that our first goal is not to make a realistic quantitative prediction,

but simply to demonstrate that, even with this type of regularity assumption, one

can obtain solutions which do not obey αG + 2αF = 0, contrarily to the common

belief. For this purpose, it is not necessary to bother about what would be the most

realistic assumption for the vertex.

2) for the gluon propagator, in the small momentum region, we use an interpolation of

the gluon propagator given by the lattice, with αG = 1.

We are aware that several SD studies, for example [1], exclude this latter possibility when

considering the coupled equations, since αG and αF are then determined separately and it

is found then that κ = −αF = 1/2αG > 1/2, implying therefore αG > 1. At this point,

we recall that the paper by Bloch [3] concerning the coupled equations finds solutions with

αG = 1 and αG + 2αF = 0 (κ = 1/2), thanks to a more refined treatment of the gluon

SD equation. He can then reproduce rather well the gluon lattice propagator. Then the

question is compelling: knowing that the gluon lattice data are well reproduced by him,

and that the lattice data satisfy the ghost SD equation he is solving, how can it be that our

lattice ghost dressing function exhibits an infrared behaviour different from his prediction

1/k ? We show that this is due not to lattice artefacts but to the possibility — neglected

by him — that there be different types of solutions to the ghost equation for the same

gluon propagator, depending on the value of the coupling constant.

2. Analytical considerations on the behaviour at small k

As a preliminary to the numerical study, let us recall or establish analytical relations

which can be used as tests of the soundness and accuracy of our numerical calculation.

We extract them from a more complete discussion which will be given in a forthcoming

paper [21].

In this section and hereafter, since we adopt the constancy assumption for the ghost-

gluon vertex, it appears immediately that the coupling constant only appears in the com-

bination:

g̃2 ≡ Ncg
2
Rz̃1 H1R = Ncg

2
B(Z3Z̃

2
3/z̃1)H1R = Ncg

2
BZ3Z̃

2
3 H1B (2.1)

where H1R or H1B are constants. We use this auxiliary notation througout the rest of

the article. From the last equality, it is obvious that g̃2 is independent of the way one

renormalises the vertex since only the bare vertex appears.

We proceed as in our paper [5]:

- we separate the integral into a UV part and an IR part, characterised respectively

by q > q0 and q < q0 for some suitably chosen q0.

-for the infrared contribution (see eq. (14) and (17) of [3] with αΓ = 0 and H1 and

h constant), we use the power laws FR(k) ≃ A(k2)αF and GR(k) ≃ B(k2)αG , assumed to

hold as k → 0, i.e. for k < q0.

– 7 –
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-we write eq. (1.12) replacing k by λk, taking k′ = λκk (κ fixed and < 1) and perform-

ing the change of variable q → λq. We then consider the IR limit λ → 0; we show that,

then, the UV part goes to zero at least as fast as λ2.

1) Singular solution. Let us establish a relation for g̃2
c , the value of g̃2 corrresponding

to the singular solution, which is found to be unique. It is inspired by Bloch [3].

One can write, at leading order in λ:

(λ2k2)−αF (1 − κ−2αF ) ≃− g̃c
2 λ2(αF +αG) A2B

∫ q<q0/λ d4q

(2π)4
(q2)αF (2.2)

×

(
1 −

(k.q)2

k2q2

)[
((q − k)2)αG−2 − ((q − κk)2)αG−2

]
.

For αG = 1 and αF < 0 this integral, being O(λ2(αF +αG)), dominates by a negative

power of λ over the UV part which is O(λ2). We can then neglect the UV part. This

gives the relation 2αF + αG = 0, whence αF = −1/2 and F (k2) ≃ 1/k. Furthermore

one can give an analytic expression for the IR integral in terms of the function:

f(a, b) =
1

16π2

Γ(2 + a)Γ(2 + b)Γ(−a − b − 2)

Γ(−a)Γ(−b)Γ(4 + a + b)
. (2.3)

Its value is equal to (1 − κ−2αF )(k2)−αF Φ(αG) with

Φ(αG) = −
1

2

(
f

(
−

αG

2
, αG − 2

)
+f

(
−

αG

2
, αG − 1

)
+f

(
−

αG

2
−1, αG−1

))
+

+
1

4

(
f

(
−

αG

2
−1, αG−2

)
+f

(
−

αG

2
−1, αG

)
+f

(
−

αG

2
+1, αG − 2

))
,

(2.4)

which leads to g̃2
cA

2B = 1
Φ(αG) . In our case, αG = 1 and αF = −1

2 , Φ(1) = 1
10π2 and

the relation becomes:

g̃2
cA

2G
(2)
R (0) = 10π2 (2.5)

where G
(2)
R , the gluon propagator, if finite at the origin.

This is only a relation between g̃2
c and A and it does not allow us to know a priori the

value of g̃2
c before any numerical computation, unless a very small renormalization

point µ is chosen. In this case we have: A = (µ2)−αF and B = (µ2)−αG so that

g̃2
c = 1

Φ(αG) (g̃2
c = 10π2 when αG = 1).

2) Regular solutions. If, on the other hand, αF = 0 the l.h.s. is trivially zero at

leading order in λ and one has to go a step further in the expansion to get a non

trivial result. Noting that A = FR(0) and B = G
(2)
R (0) one finds that the IR part of

the integral has the form:

− g̃2λ2FR(0)2G
(2)
R (0)

∫ q<q0/λ d4q

(2π)4

(
1 −

(k.q)2

k2q2

)[
1

(q − k)2
−

1

(q − κk)2

]
= (2.6)

− g̃2 1

64π2
λ2k2(1 − κ2) log(q0/(λ k))FR(0)2G

(2)
R (0) + · · ·

– 8 –



J
H
E
P
0
6
(
2
0
0
8
)
0
1
2

where the dots denote subleading O(k2) terms. It still dominates over the

UV part, although now it is only by a logarithm. We then write consistently

FR(k2) = a + bk2 log(1/k2) + O(k2) in the l.h.s, and we find:

FR(k2) = FR(0)

(
1 − g̃2 1

64π2
FR(0)2G

(2)
R (0)k2 log(M2/k2)

)
(2.7)

M2 being some scale which we cannot derive from this IR expansion. Let us stress

that equations (2.6) and (2.7) are meaningful only to the extent that G
(2)
R (0) is finite

and non zero, i.e. that αG = 1.

3. Numerical solution of the Schwinger-Dyson equation for the ghost

In this section we want to see whether the two types of solutions (αF = 0 and 2αF + αG =

0) suggested by our analytical discussion in [5, 13] do actually exist for the same gluon

propagator. We answer positively by solving numerically the ghost SD equation for given

gluon propagator and vertex. In the following we shall use the subtracted form of the

Schwinger-Dyson equation for the ghost in the Landau (i.e. Lorentz) gauge. This equation

has been written above, eq. (1.12).

We start from an IR finite gluon propagator (αG = 1) extracted from our lattice data

in pure Yang-Mills theory with Wilson gauge action, β = 5.8 and a lattice volume equal

to 324, for momenta lower than 1.5 GeV; this choice is justified to have moderate UV

artefacts. We extend it to larger momenta using a one loop asymptotic expansion (with

ΛMOM = 1 GeV corresponding to the standard ΛMS = .240 GeV of quenched lattice QCD).

On the other hand, we take H1(q, k) to be constant with respect to both momenta.9 As we

said above, this is suggested by the lattice data for q = k (i.e. for zero gluon momentum),

but we extend it to all values of q and k. The authors of ref. [10] find a bare vertex very

close to 1 in this zero momentum gluon configuration for a large range of
√

q2.

We work in the MOM scheme, and set k′2 appearing in eq. (1.12) as the squared

renormalisation scale µ2 (µ has been chosen at an optimum 1.5 GeV, not too high to allow

the lattice data to be safe, and not too small to display the differences between solutions

at small momenta). The equation we have to solve is:

1

FR(k2)
=1 − g̃2

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)
×

×

[
GR((q − k)2)

((q − k)2)2
−

GR((q − k′)2)

((q − k′)2)2

]
FR(q2)


k′2=µ2

. (3.1)

Note that this equation implies that g̃2 depends only on the renormalisation point chosen for

the propagators; it is independent of the particular way used to define the renormalisation

of the vertex, in agreement with eq. (2.1). Eq. (3.1) can be transformed further to a new

form which makes the numerical calculation and the presentation of the various solutions

9This cannot be an exact statement, as already shown in perturbation by the calculations of ref. [6, 22]:

although finite, the vertex invariants do depend on the momenta through the running αs.
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easier; for this, we subtract the equation at k = 0 to let the value of FR(k) at the origin

appear and to eliminate the reference to the particular normalisation point µ, and we

redefine also the unknown function to be calculated as F̃ (k) = g̃FR(k). Then the reference

to the value of g̃ also disappears; we end with:

1

F̃ (k2)
=

1

F̃ (0)
−

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)
×

×

[
GR((q − k)2)

((q − k)2)2
−

GR((q)2)

((q)2)2

]
F̃ (q2). (3.2)

We solve equation (3.2) for F̃ (k2), for a set of values of F̃ (0). It is easy to see that from

this solution we can reconstruct the desired solution of eq. (3.1) for any renormalisation

point and any value of g̃. Indeed we have g̃(µ) = F̃ (µ2) so that, for given µ and g̃, it

suffices to identify the value of F̃ (0) such that F̃ (µ2) = g̃. Then we reconstruct FR(k2)

through FR(k2) = F̃ (k2)/g̃(µ)

By construction all the solutions found in this way are finite at the origin. The solution

which diverges at the origin will be found by setting 1
eF (0)

= 0 in eq. (3.2). Alternatively it

can also be approached by making F̃ (0) larger and larger.

From the practical point of view, we have looked for solutions of eq. (3.2) with the

integral cut in the UV at q = 30 GeV. We have discretized it in k and q. Taking values

of the momenta spaced out by 0.01 GeV for q ≤ 2 GeV and by 0.1 GeV for q ≥ 2 GeV we

have computed the angular integral of the r.h.s. of eq. (3.1). Then, we solved this equation

by iteration. Minus the integral in the r.h.s. is positive, allowing an easy convergence. We

linearize it at each step, following the Newton method, to accelerate the convergence of

the iteration procedure, as suggested by Bloch.

The results are the following:

1) Critical case, singular solution. We find a solution with 1
eF (0)

= 0, i.e. F̃ (0) = ∞.

We find then the corresponding “critical” constant:

g̃c
2 = F̃ (1.5 GeV) = 33.198 . . . . (3.3)

This value happens to be very close to the one expected from eq. (2.5):

g̃c
2A2G(2)(0)

1

10π2
≈ 0.994 . . . . (3.4)

The integration near k = 0 can be improved by taking explicitly into account

the analytical behavior of the kernel, and assuming that the solution behaves as

1/k at small k. This procedure enforces eq. (2.5) and one checks actually that

g̃2
ck

2F (k2)2G(2)(k2) 1
10π2 goes very smoothly to 1 when k → 0.

2) Regular case. We find a solution for all F̃ (0) > 0, and only one for each F̃ (0) >

0 with our method of solution. From our numerical solution at g̃2 ≃ 29, which

corresponds to the best description of lattice data (see figure 2), we can test the
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Figure 1: The a+bk2 log(k2) fit at small momentum (dashed line) to our continuum SD prediction

for the ghost dressing function, renormalised at µ = 1.5GeV for g̃2 = 29.(solid line) ; the slope of

the k2 log(k2) term is 4.06; the agreement with the expected coefficient of k2 log(k2), 4.11 from the

eq. (2.7), is striking.

relation (2.7) giving the k2 log(k2) term. The result is presented in figure 1 and the

slope agrees well with what is expected from (2.7): 4.06 against 4.11.

The critical value of the coupling constant as well as the corresponding curve of F̃ (k)

can be very well approximated by the regular solutions at very large F̃ (0). When

F̃ (0) becomes larger and larger eq. (2.7) remains valid only in a smaller and smaller

region near k = 0, while in an intermediate region a 1/k behaviour is observed.

In conclusion, in the case αG = 1 we have exhibited a continuum set of IR finite solu-

tions for arbitrary F (0), and a unique singular solution for g̃2 = g̃2
c , with αF = −1

2 . These

are the only solutions obtained with our iteration procedure using the Newton method. Of

course this doesn’t prove that no other solution exists.

3.1 Why the regular solutions have not been obtained previously

The regular solutions could not be obtained by the proponents of the equation 1.3, because,

as it seems to us, they discard them from the beginning and thereby choose the critical

value of the coupling constant, by making an implicit assumption when solving the so-

called “infrared equation” for the ghost SD equation. One can see this in the papers by R.

Alkofer et al. (for instance [1], eqs. (43), (44)), or in the detailed discussion of Bloch [3]),

eqs. (55) to (58) .

Let us explain this briefly. They consider the above unsubtracted equation (note that

this requires then an UV cutoff, which we avoid in our discussions by considering the
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subtracted form — see below, next section); we write again the unsubtracted form:

1

FR(k2)
= Z̃3 − Ncg

2
Rz̃1

∫
d4q

(2π)4

(
1 −

(k.q)2

k2q2

)
×

×

[
GR((q − k)2)H1R(q, k)

((q − k)2)2

]
FR(q2). (3.5)

One tries to match the small k2 behaviour of the two sides of eq. (3.5). This is done

for example in eq. (58) of [3]. To this end a condition is then written which consists in

equating the coefficient of (k2)−αF in the l.h.s with the corresponding one on the right.

However, one notices that in the r.h.s. there is a constant contribution ∝ (k2)0. Therefore,

unless this constant term, Z̃3, is cancelled by the integral contribution for k → 0, we have

necessarily αF = 0. To have αF < 0 as the author finds, one needs this cancellation. This

is what is implicitly assumed, but not stated explicitly. The condition of cancellation is:

Z̃3 = Ncg
2
Rz̃1

∫
d4q

(2π)4

(
1 −

(k.q)2

k2 q2

)
FR(q2)


k=0

. (3.6)

The important point is that this additional equation is not a consequence of the starting

SD ghost equation and, indeed, it is not fulfilled in general by the solutions of this basic

equation, as we show by exhibiting actually IR finite solutions. In fact, it can be valid only

for a particular value of the coupling constant, the critical one which is solution to

the equation of Bloch, his eq. (58), and which we derive rigorously through the subtracted

equation (see our eq. (2.5)).

Let us make precise that at this stage the value of the coupling constant is taken as

a free parameter. However it should be fixed at the end to ensure consistency with the

lattice data which we are using. This is what will be done in the next section.

4. Phenomenology

Having presented the general study and found the announced two types of solutions for the

ghost dressing function, either regular or singular, we are facing the question: which one

is effectively realised on the lattice, and therefore in true QCD? Let us recall the classical

problems which hamper the answer: it is not possible to know from the lattice data with

total certitude whether the ghost dressing function is singular or not, because 1) on the

one hand, the “singular” qualification by itself does not tell how close one should be to the

zero momentum for the singularity to show up and 2) on the other hand, one cannot get

arbitrarily close to zero momentum on the lattice.

A better way is offered by our calculation: it predicts the behavior of the respective

solutions for the ghost over the whole range of momentum and not only very close to

k = 0 ; then looking to the lattice data, we can identify which one is the most compatible

with the data.10 From figure 2, we see that we can discard rather safely the singular

solution, because it is passing much above the lattice data points over a very large range

10At this stage, it is useful to stress the advantage of working with the renormalised form of the SD

equations; indeed the continuum and lattice versions are more directly comparable than the bare ones. As
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Figure 2: Comparison between the lattice SU(3) data at β = 5.8 and with a volume 324 for

the ghost dressing function and our continuum SD prediction renormalised at µ = 1.5GeV for

g̃2 = 29. (solid line); the agreement is striking; also shown is the singular solution which exists only

at g̃2 = 33.198 . . . . (broken line),and which is obviously excluded.

of momentum: around 50% at the leftmost point which was measured on our lattice,

k = 0.26 GeV, but still quite sizeably near k = 0.5 GeV. It is therefore quite unprobable

that any lattice IR artefact could fill the gap. The advantage of our method is that, by

calculating what the critical solution should be at rather large momenta, we are able to

discard it more convincingly.

On the other hand, we find a very good description of the lattice data in the range

g̃2 = 28.3 − 29.8 (the range is defined by one standard deviation except for the lowest

point). This striking agreement is illustrated by figure 2 (for indication, we quote the IR

limit FR(0) = 2.51 for the same µ = 1.5 and g̃2 = 29).

Moreover, we can perform the following consistency test. Starting from the equa-

tion (2.1) which defines g̃2 in terms of bare quantities we apply it to connect the continuum

g̃2 to the lattice bare quantities:

g̃2 = Ncg
2
Rz̃1 = Nc(6/β) F 2

B(µ2)GB(µ2)H1B. (4.1)

We then ask whether our range g̃2 = 28.3 − 29.8 is reasonably consistent with the r.h.s.

of eq. (4.1) as given by lattice data. Let us stress that eq. (4.1) should be then only

approximate in several respects; first, it is valid up to finite cutoff effects, as well as volume

we have seen in our paper [5], the bare lattice equation for the ghost is affected by an important artefact

which vanishes only very slowly with the cutoff, being of order O(g2). In the renormalised version, this

effect is included in the renormalisation constant eZ3, and we are left only with the much smaller cutoff

effects of the type O(an).
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effects ; second, we have replaced the lattice vertex invariant H1B(q, k) by the constant H1B

(which is very rough) and we cannot test on the lattice the assumed constancy over the

momenta which are actually implied in our calculation since we have only at our disposal

a lattice measure of H1B at q = k; last but not least, a lattice measurement of such vertex

quantities is difficult because it is very noisy. Thus the test is only qualitative; nevertheless,

the result is very encouraging as we see now.

Indeed, from the above value of g̃2 found in the continuum on the one hand and the

lattice data β = 5.8, GB(µ2) ≃ 2.89 and FB(µ2) ≃ 1.64 (µ is here chosen as 1.5 GeV) on

the other hand, we can deduce the value of the factor H1B needed to satisfy equation (4.1)

and which represents some average on momenta. We find H1B ⋍ 1.2. This number should

be compared to the lattice measurements which are for H1B at q = k, and which give

about 1., with large errors (slightly larger or equal to 1., depending on the k value, see

ref. [10]). The comparison seems very encouraging in view of the large uncertainties of

the procedure: lattice artefacts, errors on H1B , and finally the fact that our H1B is some

average on momenta away from q = k.

Another way of presenting the striking difference between the regular solution and

the singular one is in terms of the familiar product discussed in the introduction:

GR(k)FR(k)2.11 From the analytical discussion, in the critical case it should tend to

10 π2/g̃c
2
≃ 3. when k → 0 , and numerically it should be 3.14 at our smallest lattice

momentum k = 0.26 . This is completely at odds with the lattice data: the lattice value

is 1.28 at k = 0.26 and there is a clear tendency towards still lower values at smaller k.

On the contrary, our regular solution fits perfectly the lattice data. We illustrate this in

figure 3. Let us stress that our SD solutions (continuous curve) are obtained in the con-

tinuum and in infinite volume; they appeal to the lattice data only to have a physically

reasonable definite gluon propagator as an input to the SD equation.

5. Conclusion

The relation αG + 2αF = 0 is usually believed to be an unavoidable consequence of SD

equations. The problem is that the lattice data grossly contradict it. Indeed, for small

momenta G(k2)F (k2)2 goes very fast to 0. We resolve this contradiction in the following

way. We show that the mentioned belief is wrong and that an alternative exists by solving

numerically the ghost SD equation with input from the lattice for the gluon propagator

and the vertex.

The alternative is the one we have previously envisaged as a possibility in a general

analytical analysis [5, 13]: αF = 0 with αG > 1, allowing G(k2)F (k2)2 to go to 0 as shown

by the data, but in the present article its existence is demonstrated by actually solving for

F the equation for a given G. This solution violates the statement αG + 2αF = 0.

The relation αG + 2αF = 0 would imply that the ghost form-factor is singular, since

αG > 0. The numerical solution of the equation then adds another strong reason for

11Usually, this quantity is presented with multiplication by an additional factor including the renormalised

coupling constant and possibly other factors. Here, we present the raw product to avoid any ambiguity in

such procedures.
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Figure 3: Comparison between our lattice SU(3) data at β = 5.8 and with a volume 324 for the

product of gluon times square ghost dressing functions GR(k)FR(k)2, renormalised at µ = 1.5GeV,

and the corresponding curve for the continuum singular solution αG + 2αF = 0, which exists only

at g̃2 = 33.198 . . . ; the disagreement is manifest. Up to a factor g2/4π, it corresponds to the

α(k2) presented in figure 8 by Fischer [23] and the form is actually very similar. Also shown is our

continuum regular solution for g̃2 = 29. (solid line) for which the agreement is striking.

rejecting this relation. A singular solution — which necessarily satisfies αG + 2αF = 0 —

only exists for a definite value of the coupling constant. We calculate it and find that it

differs grossly from the lattice data on a large range of k, and not only for the smallest

momenta.

The alternative solution, which is regular in the infrared (αF = 0), is realised if the

coupling constant is smaller than a certain critical value while the singular one is present

only at the critical value. The lattice data for the ghost are very well reproduced for a

coupling constant close to the one expected from the value β = 6.0 used for the lattice

calculation. We are then confident to have found the actual QCD solution, up to moderate

artefacts.

Our numerical study therefore adds strong new arguments from the lattice data in

favor of this alternative. It is based on the ghost equation only, since we feel that the gluon

equation, being much more complicated, suffers from much more uncertainties due to the

necessary critical approximations to be made - this has been illustrated by the findings of

Bloch [3].

The alternative, regular, solution has not been found in usual studies, because they

have chosen by construction the critical value.

The important physical consequence is that we do not get the alleged non trivial IR

fixed point for the MOM coupling constant since gR(k) → 0 when k → 0 at fixed g0 as for

the three-gluon couplings, in agreement with lattice data. At this point, it is important to

insist on the fact that there are infinitely many definitions of “the” QCD coupling constant.

A priori, there is no reason for their IR behaviour to be universal. In particular, the
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ones defined from elementary fields Green functions have no reason to behave in the same

way as more physical definitions such as taken from the perturbative expansion of certain

physical hadronic amplitudes.
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